Extraction of GPDs from new high-precision QCD analyses of novel high-statistics e-p and p-p measurements at fixed-target and collider energies.
Extraction of GPDs from new high-precision QCD analyses of novel high-statistics e-p and p-p measurements at fixed-target and collider energies.
Development of new Monte Carlo tools and studies of benchmark channels, for e-A collisions at future deep-inelastic experiments (Electron-Ion Collider, EIC). Optimisation of associated detector designs for high-resolution tracking, vertexing, photon, and PID.
Development of a common data-theory analysis framework to determine exotic hadrons properties (new mesons and baryons, onia, dibaryon, multi-quark, glueballs, hybrids...) by fitting new experimental data (MAMI, TJNAF, BESIII, COMPASS, LHCb and ALICE at CERN) to lattice QCD and effective-field-theory predictions.
Development of beyond state-of-art radiation detectors based on semiconductors (Cadmium Telluride, Cadmium Zinc Telluride) able to perform high-precision measurements of X-ray and gamma-ray photons in different environments/conditions.