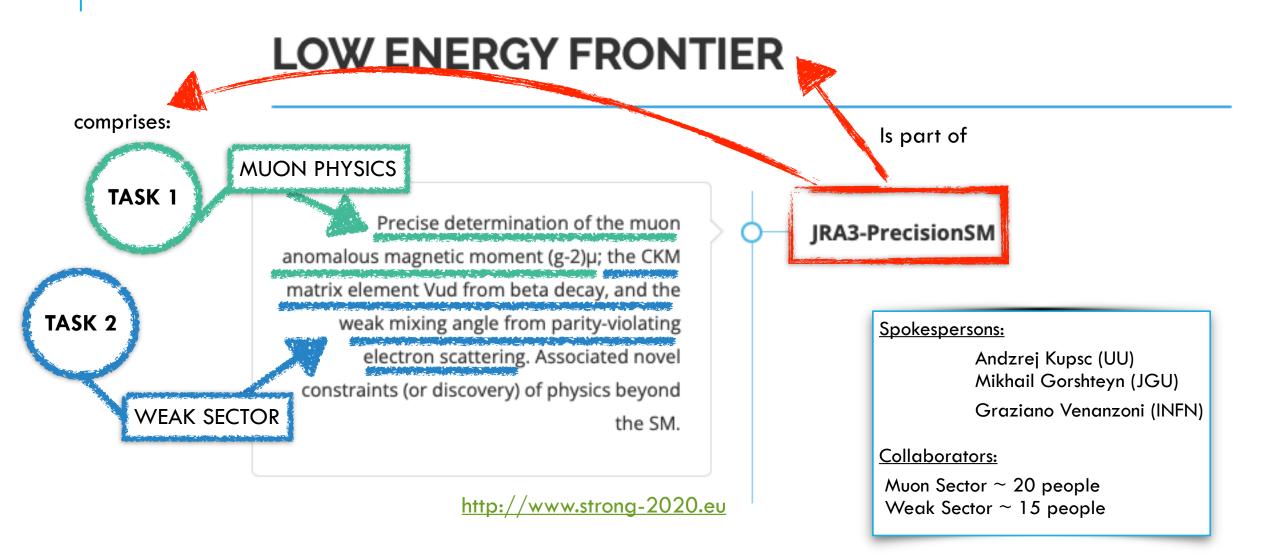


JRA3-Precision Tests of the Standard Model

Anna Driutti (University and INFN Pisa) on behalf of JRA3 working group



STRONG-2020 ANNUAL MEETING

17, 18 and 19 October 2022, in Paris, France

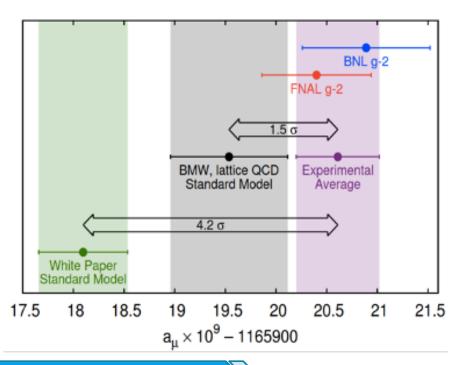
INTRODUCTION

Quarks

<u>u c</u>t d s b

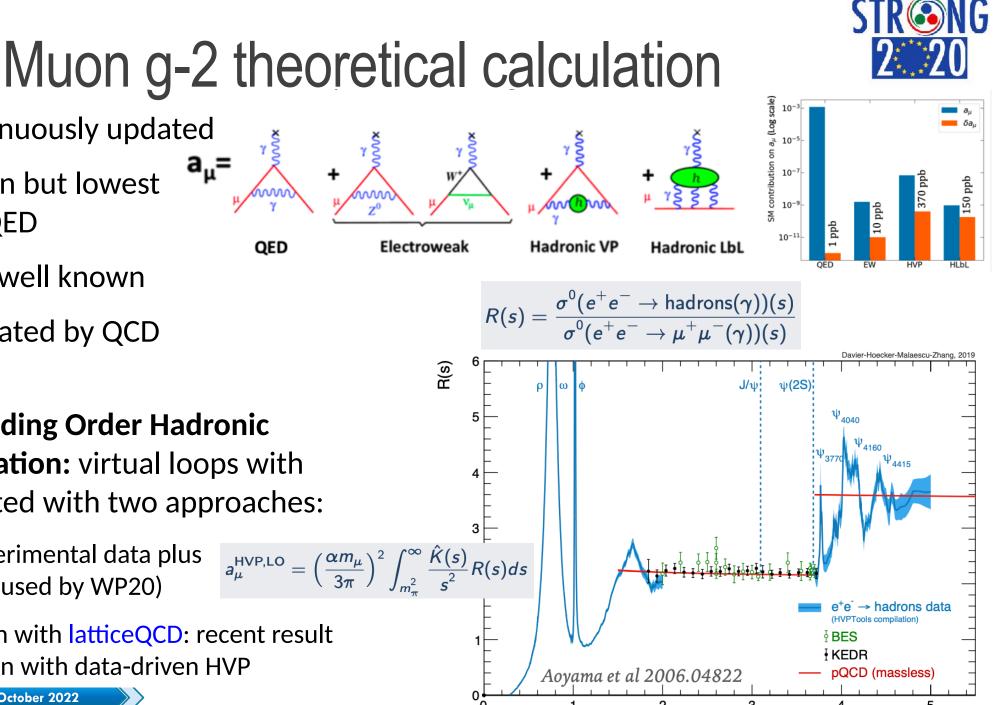
 $e \mu \tau$

ptons


Muon g-2 anomaly discrepancy

• Muon: elementary particle with spin-1/2 and magnetic moment proportional to spin through the **g-factor**: $q \rightarrow q - 2$

$$\vec{\mu} = \mathbf{g} \frac{q}{2m_{\mu}} \vec{S} \implies \left[a_{\mu} = \frac{g-2}{2} \right]$$
 muon anomaly


Comparison between theoretical value and experimental measurement allows for a precise test of the Standard Model and to look for new physic

- New measurement from FNAL Muon g 2 Exp. Run-1 data in 2021 confirmed result from BNL:

 a_μ(FNAL) = 116592040(54) · 10⁻¹¹ (460ppb)
 a_μ(BNL) = 116592089(63) · 10⁻¹¹ (540 ppb)
 a_μ(Exp) = 116592061(41) · 10⁻¹¹ (350 ppb)
 - $a_{\mu}(BMW,SM)$ calculation with LatticeQCD

- a_{μ} (WP,SM)calculation recommended by the Theory Initiative based on $e^{+}e^{-}$ data

- Calculation is continuously updated
- Largest contribution but lowest uncertainty from QED
- EW terms are also well known
- Uncertainty dominated by QCD contributions:
 - mainly from Leading Order Hadronic Vacuum Polarization: virtual loops with hadrons calculated with two approaches:

- data-driven: experimental data plus dispersion theory (used by WP20)

- direct calculation with latticeQCD: recent result (BMW20) in tension with data-driven HVP

Precision SM Activities for Muon g-2

- Goal: compile an annotated database for low-energy hadronic cross sections in e^+e^- collisions
- Activities:
 - collect in <u>HEPDATA</u> low energy hadronic crosssection measurements

- HEP data public storage web site with well defined submission data format
- Submissions done only by authorized contact persons of collaborations

Browse all 🖉 Benaksas, D. et al.			Last updated	on 1979-07-17 00:00 📶 Accessed 584 times 😏 Cite JSO		
∢Hide Publication Information bi+ pi- production by e+ e- annihilation in the rho energy range with the Orsay storage ring	▲ Download All → ▼ Filter 1 data tables	Table 1 10.17182/heads	112.28321.v3/11	https://www.hepdata.net/reco		
Benaksas, D. , Cosme, G. , Jean-Marie, B. , Jullian, S. Laplanche, F. , LeFrancois, J. , Liberman, A.D. , Parrour, G. , Repellin, J.P. , Sauvage, G. Phys.Lett. B 39 (1972) 289-293, 1972. https://doi.org/10.17182/hepdata.28321 Journal INSPIRE Abstract (data abstract) ORSAY-ACO, 0P CT SOLD ANGLE DETECTOR. RHO- OMEGA INTERFERENCE MEASURED. THESE DATA ARE INCOMPATIBLE WITH PREVIOUS ORSAY RESULTS, J. E. AUGUSTIN ET AL., NCL 2, 214 (1969).	Table 1 > Data from T 2 10.17182/hepdata.28321.v1/t1 Statistical. ERRORS ONLY. CROSS SECTION AT RHOD PEAK IS 1.00 +- 0.13 MUB FROM FIT.	Creenergies	observables	phrases reactions ● Integrated Cross ● E+E> PI+PI- ● Cross Section ● E+E> RHOO		
		RE SQRT(S)	E+ E> PI+ PI- 0.705-0.99 GeV	Visualize		
		SQRT(S) [GEV]	SIG [MUB]	11-		
		0.705	0.77 ±0.08	1.0- 0.9-		
		0.758	1.09 ±0.11	0.8-		
		0.7714	1.12 ±0.1	0.7-1		
		0.7777	1.22 ±0.1	0.6- 1		
		0.784	1.02 ±0.07	0.4-		
		0.7903	0.73 ±0.06	0.720.740.760.760.800.820.840.860.800.920.940.960. SORTISI IGEVI		
		0.7967	0.69 ±0.1	Sum errors 🗹 Log Scale (X) 🗆		
		0.8099	0.62 ±0.08			

Precision SM Activities for Muon g-2

- Goal: compile an annotated database for low-energy hadronic cross sections in e^+e^- collisions
- Activities:
 - collect in <u>HEPDATA</u> low energy hadronic cross-section measurements
 - maintain annotated database of hadronic cross-section measurements for computation of the LO HVP contribution to a_{μ} on dedicated web site, with hyperlinks

precision-sm.githut	b.io			< * O		£ 0 *	🛛 🌒 E			
PrecisionSM	Contents ▼ Docs Abo	out ▼ RSS feed	Sear	ch		۹				
Precision	SM web sit	e (work in pr	ogress)							
 Measurements HEPData subrol cured by HEPData subrol HEPData subrol Plots 	missions PrecisionSM		9	STR 2	2	NG N				
Contents © 2022 Pr	ecisionSM Group - Pow	ered by Nikola			*.*		-			
	\leftrightarrow \rightarrow C $\stackrel{\text{\tiny B}}{=}$ precision-s	sm.github.io/measurements-db/				<	* •	🌬 👩 🎘 O :	* 🖬 🌒 E	
	PrecisionSI	M Contents - Docs	About - RSS feed			Search		م		
	Measu	rements Dat	abase (downloa	ıd)						
		channel	l experiment	year re	f hepdata	details				
		$\pi^+\pi^-$	BCF (ADONE, Frascati)	1975 re	f hepdata	details -	~			
		$\pi^+\pi^-$	MEA (ADONE, Frascati)		f hepdata					
		$\pi^+\pi^-$ $\pi^+\pi^-$	MEA (ADONE, Frascati)	1980 re 2005 re	f hepdata	details details				
		$\pi^+\pi^-$		2005 re 2013 re		details				
		$\pi^+\pi^-$		2013 re		details				
		$\pi^+\pi^-$			f hepdata					
		$\pi^+\pi^-$	ACO (Orsay)		f hepdata					
		$\pi^+\pi^-$	NA7 (Fixed target, CERN)	1984 re	f hepdata	details				
		← → C ≗	precision-sm.github.io/measurement	s.db/#iospire	hen-100180		¥		< * 0	
		4 7 0 •	precision-singluturationessurement	5-00/witispire	100100				1 × 0	
		Prec	cisionSM Contents - D	ocs Abou	ut 🔻 RSS fe	eed		4	Search	
		:	, BCF (ADONE, Frascati), 1 hepdata: ins100180 method: Direct quotes: F_{π}	.975						
		•	energy [GeV]: 1.44 - 9 rad_corr: • No Mention comment:						6	

Precision SM Activities for Muon g-2

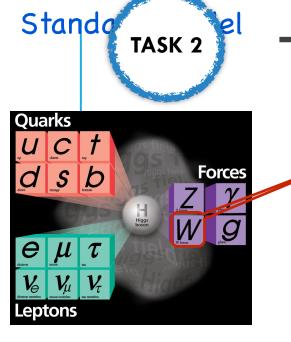
Next post

- Goal: compile an annotated database for low-energy hadronic cross sections in e^+e^- collisions
- Activities:
 - collect in <u>HEPDATA</u> low energy hadronic crosssection measurements
 - maintain annotated database of hadronic crosssection measurements for computation of the LO HVP contribution to a_{μ} on dedicated web site, with hyperlinks
 - document, with examples, how to use measurements stored in HEPDATA
 - responsive plots of measurements of hadronic cross-sections

16911				
recisionSI	M Posts - About RSS feed		Search	
	Te Root Plot with Group — 2020-11-21 01:05	data from I	HEPData	
	get two cross-section meas • e+ e> pi+ pi- BES-III 2016 • e+ e> pi+ pi- CMD-2 2007	https://www.hepdata.net/re	cord/ins1385603	
In [1]:	<pre>from math import * import re from pprint import pprint import urllib.request from requests.utils import re from array import array import json import yaml import itertools import ROOT from ROOT import TCanvas, TFi from ROOT import TGraph, TGra from ROOT import gROOT, gBenc</pre>	PrecisionSM Posts \sim About PrecisionSM Group – 2020-09-06 1 Example responsive Hovering the cursor above the points	4:36 plot reveals the respective x and y values. $ F_{\pi} ^2$	Search BESIII 2016 CMD-2 2007
	Welcome to JupyROOT 6.22/08	40	∧	
In [2]:	<pre>## ## iterator generator using o ## - first list is inner and ## - also able to return nth ## - iterator never en ## class_iterrod2: definit(self, arr1, ar self.arr1, self.arr2 = ar defiter(self): self.i1 = 0 self.i1 = 0 </pre>			0.9 √5 [GeV]

Previous post

return self



Status, Next Steps & Workshops

• Status:

- Defined procedure and completed infrastructure for the database
- In completion: collection in HEPDATA and annotation on the web site of the
- $e^+e^- \rightarrow \pi^+\pi^-$ channel
- Next Steps:
 - Add the other $e^+e^- \rightarrow hadrons$ channels
- Workshop:
 - STRONG 2020 Virtual Workshop on "<u>Spacelike and Timelike determination of the</u> <u>Hadronic Leading Order contribution to the Muon g-2</u>" [Nov 24 - 27, 2021]
 - book of abstracts submitted to ArXiv [arXiv:2201.12102]

Top-Row CKM unitarity anomaly

Charged current interaction - β-decay

 $\mu \rightarrow e + \nu_\mu + \bar{\nu}_e, \ n \rightarrow p + e + \bar{\nu}_e, \ \pi^\pm \rightarrow \mu^\pm + \nu_\mu / \bar{\nu}_\mu$

Universality of weak interaction: Same strength in lepton and quark sector

Quark mixing: strength distributed among 3 generations CKM unitarity - measure of completeness of the SM:

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{ta} & V_{ls} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix} = V_{CKM} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

PDG2020: CKM unitarity in the top row $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(3)_{V_{ud}}(4)_{V_{us}} - 3\sigma$ deficit

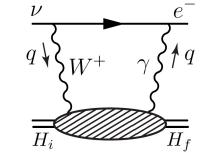
 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

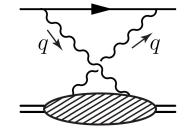
Within this JRA: CKM unitarity anomaly established and sharpened Methods for new-era high-precision SM calculations developed and applied

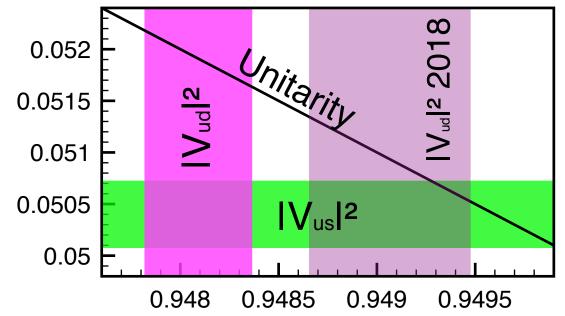
Top-Row CKM unitarity anomaly: Confirmed and Sharpened

Main source: reevaluation of the γW -box Bottleneck for precision improvement since 40 years Major improvement (factor 2) due to new framework

Dispersion relations (DR) for EW boxes


C-Y Seng, MG et al., Phys.Rev.Lett. 121 (2018) 24, 241804; C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001


DR representation of nuclear corrections


C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001; MG, Phys.Rev.Lett. 123 (2019) 4, 042503;

Combined DR + lattice QCD + phenomenology $\stackrel{g}{\searrow}$

X. Feng, MG et al, Phys.Rev.Lett. 124 (2020) 19, 192002 C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301;

Top-Row CKM unitarity anomaly: Confirmed and Sharpened

The framework further applied to

Dispersion analysis of radiative corrections to g_A for neutron β decay

MG, C-Y Seng, JHEP 10 (2021) 053

Important for: extracting V_{ud} from neutron decay; comparing g_A from experiment and lattice QCD

<u>Combined DR + lattice QCD + ChPT for RC to semileptonic kaon decays</u>

C-Y Seng, X. Feng, MG, L-C Jin, U.-G. Meißner, JHEP 10 (2020) 179 P.-X. Ma, X. Feng, MG, L-C Jin, C-Y Seng, PRD 103 (2021) 114503 C-Y Seng, D. Galviz, MG, U.-G. Meißner, PLB 820 (2021) 136522 C-Y Seng, D. Galviz, MG, U.-G. Meißner, 2103.04843

Important for: extracting V_{us} from KI3 decays; establishing the KI2-KI3 discrepancy

Complete change of landscape in SM tests with CKM unitarity in the past 2 years New method developed; wide range of applications to previously unaccessible corrections

Next Steps: Nuclear Corrections

Dispersion analysis of the nuclear structure correction δ_{NS} to V_{ud}

Collaboration with the group of S. Pastore (Green-Function Monte Carlo) and P. Navratil (No-Core Shell Model) started

Data-driven analysis of the isospin-symmetry breaking correction δ_C to V_{ud} Seng, MG, arXiv: 2208.03037 [nucl-th]

Proposal for next-generation rare pion decay experiment PIONEER

PSI Ring Cyclotron Proposal R-22-01.1 [PIONEER Collaboration] Altmannshofer et al., arXiv: 2203.01981 [hep-ex]

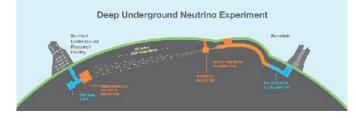
Full involvement in shaping the future of CKM unitarity

WeakMAID: pion production with neutrinos

Motivation:

Neutrino energy reconstruction for neutrino oscillation experiments (DUNE, T2HK) Inelastic neutrino scattering in the near detector, with pion production an important channel, is used as a tool to calibrate the flux of neutrinos in each energy bin to ensure a high-precision determination of neutrino oscillation parameters (masses, angles, phases).

Method and Background:


Mainz-based partial-wave analysis MAID is a leading player in the field of electromagnetic pion production. MAID is a unitarized isobar model that accounts for all known N* and Δ resonances. MAID's range of validity $W \leq 2.5$ GeV needs to be extended to 5-6 GeV to cover DUNE's needs. Axial current contribution has to be added. $\begin{array}{c} \operatorname{Vector}\left(E,M,L\right) \\ \operatorname{Axial}\left(\mathcal{E},\mathcal{M},\mathcal{L}\right) \end{array} \gamma, \underbrace{Z^{0},W^{\pm}} \\ \gamma, \underbrace{Z^{0},W^{\pm} \\ \gamma, \underbrace{Z^{0},$

Realization:

WeakMAID is based on the decomposition of scattering amplitudes for weak pion production into multipoles characterized by angular momentum l, total spin J= $l\pm 1/2$, isospin I=1/2, 3/2, multipolarity (electric E, magnetic M, and longitudinal L) carried by the electroweak probe. Each multipole is unitarized to account for strong rescattering at low energies, and matched with Regge behavior at high energies. These two features are new among the existing weak pion production models.

 $\ell, J = \ell \pm 1/2, I = 1/2, 3/2$

Website WeakMAID created

https://wwwth.kph.uni-mainz.de/weakmaid/

Users can download tables with multipoles, amplitudes as functions of energy, Q^2 , angle, and integrated cross sections as functions of Q^2 . At present website being tested, journal publication in preparation. As per MAID collaboration policies: once published and tests concluded WeakMAID will be added to official MAID website

Next Steps

Upon completion of WeakMAID the work on incorporating WeakMAID into MC neutrino events simulators will commence.

Involvement in shaping DUNE program:

Two Snowmass White Papers submitted: L. Alvarez-Ruso et al, arXiv: 2203.11298 [nucl-ex] L. Alvarez-Ruso et al, arXiv: 2203.11319 [physics.ins-det] Home

Research People Publications Teaching

Events

Press and Media

NNES GUTENBERG

🖀 HDME 🔍 SEARCH 🍶 SITEMAP 🔤 CONTACT

Theory Group

HOME RESEARCH PEOPLE PUBLICATIONS TEACHING EVENTS PRESS AND MEDIA SERVICES CONTAC

WeakMAID

Dual Unitary Isobar-Regge Model for Pion Neutrino-Production

Mikhail Gorahteyn, Institut für Kemphysik, Johannes-Gutenberg Universität Mainz

Motivation

Long-base neutrine oscillation experiments, such as **DUNE** [2], alm at determining neutrino masses and mixing parameters at an unprecedented level of precision. Born from charged pions decaying in flight, by the time they reach the for detector 1300 km away, the muon noutrinos will cociliatio to electron or tau ones. To unravel the oscillation pattern, the energy of the neutrino beam has to be known to a good precision. For this purpose, dose enough to the neutrino source - where no oscillation has occurred yet - the near detector is placed to atuly noutrino interactions with master. An important mechanism in these interactions is the production of pions. This project is dedicated to developing a state-of-the-art theoretical analysis for weak plon production on the nucleon. Embedded in Monte Corie simulation codes, it will load to precise predictions of join counts in the near declar, resulting in a reliable neutrino energy reconstruction.

Method and Background

Pion production in electromagnetic reactions has a long history. One of the leading efforts is due to the Mainz-based partial wave analysis tool MAID, a unitary loobar model that accounts for all known N° and Δ resonances, a rigle-channel unitarity and over years has proven to be a valuable analysis tool for pion photo-and electroproduction. At present, NAID is further developed by the Mainz-Tuzia-Zagreb Collaboration [7].

MAID approach is suitable for the invariant mass of the rtN-system W < 2 GeV and moderate photon virtualities. The project V/sekMAID builds upon its predecessor while extending it in several ways. Firstly, weak interaction contains the axial current, additionally to the vector current readity contained in the electromagnetic case. Secondly, the emergy spectrum of neutrinos at DUNE extends to 5-8 GeV, so that a connection to high-energy such as Regge theory is necessary. This can be correctly done by implementing unitarity, analyticity and duality constraints [2].

Realization

As a partial wave analysis (PWA) tool, WeakMAID is based on the decomposition of scattering amplitudes for weak pion production into multipoles characterized by the angular momentum *I*, total spin J=*i*±*i*/2, total isospin (=1:*i*,2):*2* of *the :m*/-system, as well as the multipolarity (elboth E, magnetis M, and longitudinal L) carried by the electro-weak probe. Two sets of multipoles clescribe the interaction with the hadronic vector and axial current. Additionally, two sets of invariant amplitudes (*J*-6 for vector and *A*+*B* for axial current are introduced, as well as center-of-mase CGLN *F1*-*6* and *G1*-6, respectively, and helicity amplitudes *H1*-6.

 $\operatorname{Vector}(E, M, L)$ Axial $(\mathcal{E}, \mathcal{M}, \mathcal{L})$ $=\ell\pm 1/2, I=1/2, 3/2$

/ector Weak Multipoles (<i>El±, Ml±, Ll±</i>)				
Vector Amplitudes (F1-8; V1-6; H1-6)	1			
Avial Weak Multinoles (Elt. Mit. Lit)	1			

REQUESTED ADJUSTMENTS

Travels were limited (COVID) for the entire duration of the project

Visits to Fermilab were impossible (COVID) for the entire duration of the project Until now this impediment was unpleasant but not critical.

The next step envisions the incorporation of the WeakMAID analysis into MC simulators for which a close collaboration with local researchers at Fermilab is crucial.

A cost-neutral 1-year extension is desired.

CONCLUSIONS

Precision tests of the Standard Model require collection, sophisticated analysis and elaboration of large number measurement:

Within the Strong2020 PrecisionSM project we are:

- assembling an annotated database of hadronic cross-section measurements with a web site that also documents how to use the data
- working on reduce uncertainties on EW boxes calculation for precise calculations of the CKM unitarity
- implementing tools to study the pion production with neutrinos

